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Capillary-gravity waves of permanent form a t  the interface between two unbounded 
fluids in relative motion are considered. The range of wavelengths for an internal 
resonance with the second harmonic and a period-doubling bifurcation are found to 
depend on the current speed. The Kelvin-Helmholtz instability of short waves 
becomes strongly subcritical near resonance. It is speculated that this instability is 
needed to trigger a period-doubling bifurcation. This notion is used to explain the 
development of waves at short fetch and the initiation of liquid slugs for gas-liquid 
flow in a horizontal pipe. 

1. Introduction 
Capillary-gravity waves of permanent form a t  the interface between two 

unbounded fluids in relative motion (Kelvin-Helmholtz waves) are considered. 
Attention is focused on wavelengths in the range where the second harmonic of a 
wave with infinitesimal amplitude resonates with the fundamental. The effect of 
current speed is examined both analytically and numerically and the weakly 
nonlinear Kelvin-Helmholtz instability is studied, for the first time, in this range of 
wavelengths. 

Kelvin-Helmholtz (K-H) gravity waves have been considered by Maslowe & 
Kelly (1970), Saffman & Yuen (1982), Pullin &, Grimshaw (1983), Miles (1986) and 
Bontozoglou & Hanratty (1988) and gravity-capillary waves by Drazin (1970), 
Nayfeh & Saric (1972) and Weissman (1979). Saffman & Yuen (1982) showed, for 
gravity waves in unbounded fluids, that the nonlinear K-H instability is always 
supercritical (i.e. the critical velocity, U,, beyond which waves of a given amplitude 
cease to exist is an increasing function of the wave amplitude). Miles (1986) and 
Bontozoglou & Hanratty (1988) showed that for some finite fluid depths the K-H 
instability for gravity waves can become subcritical (i.e. U, is a decreasing function 
of the wave amplitude). Nayfeh & Saric (1972) have pointed out that the inclusion 
of surface tension can make the instability subcritical for small enough wavelengths, 
even for unbounded fluids. Miles (1986) considered capillary-gravity waves at the 
interface of fluids of finite depths and noted the need for reformulating the problem 
in the neighbourhood of the resonant wavelength, where his results were no longer 
valid. 

Capillary-gravity waves with wavelengths close to the resonance condition have 
been considered only for free-surface waves. Wilton (19S5), revoking Stokes 
hypothesis, obtained two solutions for dimensionless surface tension K equal to 4. 
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Pierson & Fife (1961) extended Wilton’s solutions in the neighbourhood of K = t.  
Chen & Saffman (1979, 1980) interpreted Wilton’s ripples as a bifurcation 
phenomenon by which a wave doubles its wavelength (2 + 1 bifurcation) and defined, 
both analytically and numerically, a morc general class of bifurcations. Schwartz & 
Vanden-Broeck (1979) calculated families of capillary-gravity waves a t  a free 
surface, and Vanden-Broeck (1980) demonstrated that similar waves exist a t  an 
interface between two stationary fluids of different densities. 

The effect of the current velocity U on resonance, on period-doubling bifurcation 
and on the existence of progressive waves of permanent form is examined in the 
present paper. For small amplitude waves, algebraic expressions are derived using a 
weakly nonlinear approximation. A numerical method based on the hodograph 
formulation by Saffman & Yuen (1982) is used to obtain results for larger waves and, 
in particular, to obtain an understanding of the 2 +  1 bifurcation. 

The range of wavelengths over which internal resonance with the second harmonic 
is important is shown to depend strongly on the current speed U ;  for certain values 
of U ,  resonance is significant only extremely close to a singular wavelength and the 
Stokes- type expansion is valid everywhere else. 

The period-doubling bifurcation, discovered by Chen & Saffman (1979, 1980) for 
free-surface waves, is found to depend dramatically on the current speed. There is 
encouraging agreement between the numerical analysis presented in this paper and 
the bifurcation discovered in experiments by Choi (1977). This period-doubling has 
been documented in several papers (Choi 1977; Ramamonjarisoa, Baldy & Choi 
1978 ; Kawai 1979) and could constitute an important step in the evolution of wind 
ripples. 

The existence of waves of permanent form in the neighbourhod of the K-H 
instability is also examined. An interesting new result is that, for wavelengths 
shorter than the resonant and approaching it (capillary-side waves), the Kel- 
vin-Helmholtz instability becomes increasingly subcritical. The second family 
(gravity-side waves) shows a more complicated dependence of the critical current 
speed on wave steepness in that i t  reaches a maximum for waves of intermediate 
height. 

These results on the existence of waves of permanent form are applied to the 
question of how the 2 + 1  bifurcation is triggered. It is speculated that the 
bifurcation takes place when the waves become Kelvin-Helmholtz unstable, a notion 
which seems consistent with the range of wind velocities under which the 
phenomenon has been observed experimentally. 

Experimental results of Andritsos, Williams & Hanratty (1989) (for co-current 
flow of air and water-glycerine mixtures of varying viscosity) are compared with a 
prediction based on the notion that slugs form from the bifurcation and further 
growth of capillary-gravity ripples. This interpretation seems to explain the 
initiation of slugs in viscous liquids. It could also be of speculative interest for 
gaslwater flows in large diameter pipes (where the presently used theory of 
instability of long wavelength disturbances gives unreasonably large predictions for 
the critical gas velocity). 

In  92 the mathematical formulation of the problem is given. The weakly nonlinear 
approximation is developed in $ 3  and results are presented in $4. The numerical 
method is developed in 95 and used to calculate the bifurcation locus in $6. The 
Kelvin-Helmholtz instability and its speculated role in triggering the bifurcation are 
discussed in $7. The discussion of the onset of slugging is given in $8. 
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FIGURE 1. Sketch of flow system. 

2. Problem formulation - previous results 
Periodic waves a t  the interface between two unbounded fluids are considered. The 

fluids have different densities and the upper is moving relative to the lower with a 
horizontal velocity U. They are incompressible and inviscid; the motion is assumed 
to be irrotational. Solutions are obtained for two-dimensional, periodic waves of 
permanent form whose wavelength, L ,  is such that both gravity and surface tension 
are important. Properties of the lower fluid are denoted by (1) and those of the upper 
fluid by (2). The two fluids are assumed to be stably stratified by gravity, so p1 > p2. 
The flow is sketched in figure 1. Rectangular coordinates (x, y) are chosen such that 
the x-axis is horizontal and the y-axis is directed vertically upwards. The interface 
is located at y = 7 and the origin is chosen so that the mean elevation is zero. A 
Fourier expansion of the displacement is considered, 

r(x,t) = k-lA,elnk(z-ct) (n = f l ,  5 2 ,  ...). (2.1) 

Here and subsequently, except as noted, the repeated index implies summation over 
the complete spectrum. The wavenumber is designated by k and the phase speed by 
c .  The wave amplitude is assumed small enough that only the first few harmonics are 
important. The relative importance of gravity and surface tension is measured by the 
dimensionless surface tension K defined as 

where u signifies the surface tension. 
Miles (1986) has calculated capillary-gravity waves to second order with the 

hypothesis that  A ,  = O(A;) .  He found that progressive waves of permanent form 
exist for current velocities up to a critical U,, beyond which the phase velocity c 
becomes complex. This critical current is given as 

= u“,,( 1 + &‘k2A2), (2.3) 

with U,, being the critical current speed calculated from linear theory and A ,  the 
wave amplitude, being A = 2A, /k .  
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FIGURE 2. The crit,ical current speed U, as a function of dimensionless surface tension K ,  for 
deep air-water waves. ---, linear wave: -, wave witah steepness 0.01. 

The amplitude of the second harmonic is given by the expression 

E B. 
2 p , ~ ~ - 2 2 p , ( U - ~ ) ~  
(pl -p2)  gk-' - 2rk 

(2.4) 

The denominator of B vanishes a t  the wavenumber k for which the second harmonic 
of an interfacial gravity-capillary wave of infinitesimal amplitude resonates with the 
fundamental. It should be noted that the singular wavelength, given by (2.4), 
depends only on the density ratio (and, in general, the depths) of the two fluids, and 
not on the current speed. For deep air-water waves (r = 74 dynes/cm) this 
wavelength is 2.44 cm. 

The parameter C, defined in (2.3), is important in determining the behaviour in the 
neighbourhood of the Kelvin-Helmholtz instability. It has been shown that, for 
pure gravity waves, C a t  the critical condition is always positive for unbounded fluids 
(Saffman & Yuen 1982). This implies a stabilization of the interface by the formation 
of finite amplitude waves. The parameter C has been shown to become negative for 
all density ratios for thin enough lower films (Bontozoglou & Hanratty 1988) and 
also for finite-depth fluids in the Boussinesq limit (Miles 1986). For negative C, finite 
amplitude waves of permanent form cease to  exist at current speeds below the linear 
K-H instability U,,, and for U > U,, no steady-progressive waves of any amplitude 
exist. 

Figure 2 shows the critical current U, as a function of the dimensionless 
wavenumber k for a deep air-water wave (p2/p1 = 0.0013) with steepness kA = 0.01 
and wavelength in the vicinity of L = 2.44 cm. The dashed line is the critical current 
speed calculated with linear theory. For a weakly nonlinear wave, the critical air 
speed is less than for the linear wave when L < 2.44 cm (C < 0), is greater t,han for 
a linear wave when L > 2.44 cm (C > 0 ) ,  and is singular a t  K = 0.49935. An 
inspection of (2.4) indicates that in the neighbourhood of K = 0.49935, amplitude A ,  
is no longer O ( A t )  and that the analysis is invalid. It is known that a uniformly valid 
expansion can be formulated close to the singular point if the ordering A ,  = O(A,)  is 
adopted (Wilton 1915; Pierson & Fife 1961; Chen & Saffman 1979). Such an 
expansion is developed in the next section using a Lagrangian formulation. 
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3. Weakly nonlinear approximation 

lower boundaries was derived by Miles (1986) to be 
A horizontally averaged Lagrangian for a two-fluid system with rigid upper and 

(3.1) 

where d,, d, are fluid depths, U,, U,  are the ambient horizontal velocities, L is the 
corresponding Lagrangian of a single layer and q, is a set of generalized coordinates 
defined by the Fourier expansion of the interfacial displacement, 

L = plL(qn ,  Qn,d,, U1) + P z L ( q n , Q n , d , ,  u,)-cr[~(V~)~-~(Vr)~l, 

~ ( x ,  t )  = q,(t) einkx. (3.2) 

L may be obtained from the corresponding result for U =  0 through the 
transformation 

a,@) = -+inkU q,( t )  = p,(t). (3-3) 
C t  1 

The end result is 

L = $2, l [ S n m  anpmpn f a n m  gqm qn f ( -8tnrn) ( 1  +am an km k n )  q1PmPn 

+ Snm an r m  rn + P j l n m ( ( a m  + an) km kn qj q l ~ m ~ n ) I 2 , 1 ,  (3.4) 
where 

1 = o  1 = o  
0 * 0'  

Slnm = for k , + k , + k ,  * 0 '  
S,, = for k , + k ,  

and similarly for S,,,,. Also r ,  = - S,,, a,  km k,q,p, (n not summed), a, = S/nlc, 
and k ,  = nk. The subscripts 2, I refer to the upper/lower fluid. Summation with 
subscripts 2 , l  fixed is implied and the alternative signs in (3.4) correspond to the 
upper and lower fluids. (For more details see Miles 1986.) 

A wave of permanent form is considered so that 

n n (n = f 1, f 2 ,  +3, +4), (3.5) 
= k-1A e-inkct 

where A ,  are dimensionless amplitudes. The ordering A ,  = O(A,),  A ,  = O(A:) ,  A ,  = 
(A; )  is postulated. By substituting (3.5) into (3.3) and (3.4), truncating a t  n = 4, 
which is consistent with a quartic approximation to L ,  and neglecting terms of order 
(A:) the following is obtained : 

L = pz.1 k - 1 { ( A ~ + 2 A ~ + 3 A ~ + 4 A ~ ) ( U , , l - c ) 2 f ( g / k ) ( A ~ + A ~ + A ~ + A ~ )  

& (U2,1- ~) ' (2At  A2 + 8A i A4 + 8A1 A ,  As) + ( U,, - c ) ~ ( ~ A ;  At -A: - 8A:)},, , 
- a(A + 4x4 + 9A i + 16Ai - $4: - 12Ai - 12A f A t ) .  (3.6) 

To simplify the appearance of the equations, it is postulated that U, = 0 and 
U, = U .  This can be done without loss of generality when calculating steady 
waves. Furthermore, the velocities c and U are non-dimensionalized by dividing by 
( g / ~ l ) " ~  and the density ratio r = p2/p1 is introduced. As a result the dimensionless 
number K ,  defined by (2.2), appears in the place of surface tension. By requiring 
i3L/i3A3 = 0,  i3L/i3A4 = 0,  the following are obtained : 

c2 - r (  U - C ) ~  
6[c2 + ~ ( U - C ) ~ ]  -2(1 - r )  - 1 8 ~ '  

A ,  = 8A,A,  

c2 - r( U- c ) ~  
8[c2 + ~ ( U - C ) ~ ]  -2( 1 - r )  -32~' 

A ,  = 8Ai 

(3.7) 
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c2+r(U-c)2  = (1-r)+ 2 A 2 + 4 L  [ C " T ( U - C ) Z ]  ( A A1 

~ [ C ' + T ( U - C ) ' ]  = ( l - r ) +  [c"T(U-C)~]  

- (8A; - 16Ai) [c' + T (  U -  c),] + 4K( 1 - 6Ai - 3A;). (3.10) 

Either (3.9) or (3.10) can be considered to  be the dispersion relation to order O(A;). 

4. Influence of current speed on resonance 
Equations (3.9) and (3.10) can be combined to  derive a relation between the 

amplitudes A ,  and A ,  that is uniformly valid for all wavelengths. To order A: the 
result is 

( 1 - T )  - 2 K  

2C2 - (1 -?') - K 
AT = A, +4A;. 

Equation (4.1) contains the whole phenomenon of gravity-capillary waves in the 
neighbourhood of the first critical wavelength. For values of K that are not close to 
$ ( l - ~ ) ,  A, = O(A:) and the Stokes type expansion is recovered. For K = i ( l - r ) ,  
equation (4.1) gives A, = +2A,  in agreement with Wilton's (1915) result. For r = 0 
and U = 0, (4.1) agrees with the result derived for free-surface waves (Pierson & Fife 
1961 ; Chen & Saffman 1979). 

Chen & Saffman (1979) pointed out that (4.1) may be interpreted as specifying A, 
for a given A,. Then, solutions with A, + 0 exist only ifA, is such that the right-hand 
side of (4.1) is positive. Figure 3 shows the accessible regions of the (A,, K )  plane for 
r = 0, U = 0 as the areas outside the two intersecting lines. The inclined line is the 
locus of (A,, K )  points (with A ,  + 0) for which A ,  vanishes. Term A,  is also zero along 
the K-axis. It is important to notice that steady-progressive solutions with A, = 0, 
A ,  =k 0 exist everywhere in the neighbourhood of K = i. These simple waves with 
two cycles considered as one wavelength (class 2 waves) are not singular close to 
K = i. Chen & Saffman (1979) demonstrated that for K + $ a bifurcation can occur for 
which the wavelength of this simple wave doubles (2 + 1 bifurcation). Consider, for 
example, a class 2 wave with K > t ,  A ,  > 0 that is growing in amplitude (the dashed 
line in figure 3). Such a wave is unique until A ,  reaches a critical value (where the 
dashed line intersects the A, = 0 curve). Here the pure wave can (but, need not) 
bifurcate by adding a A, + 0 subharmonic and, therefore, double its wavelength. The 
situation is similar for K < t and A, < 0. 

Figure 4 demonstrates the change in the accessible region on the (A,, K)-plane for 
air-water waves ( r  = 0.0013) moving in the direction of the wind. The lines are the 
loci of the points for which A ,  = 0 is calculated with (4.1) for different air velocities. 
The accessible regions are contained in the oblique angles defined by the inclined line 
and the K-axis. It is evident that, as the air velocity increases, the bifurcation loci 
become more inclined and approach the horizontal. The change is insignificant for 
small air velocities but becomes important close to conditions required for a K-H 
instability. Consider, for example, a pure class 2 wave that is growing in amplitude. 
Figure 4 indicates that, as the air velocity increases, the wave needs to reach a higher 
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FIGURE 3. The accessible region of the (Az, K)-plane for free-surface waves (shaded areas). 
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FIGURE 4. The accessible region of the (Az,  K)-plane for air-water waves and different current 

velocitiesU. 1 :  U=0;2:U=200cm/s;3:U=400cm/s;4:U=600cm/s. 

amplitude before it is able to bifurcate. For even higher air velocities the loci for 
bifurcation have a negative inclination to the horizontal, whose value increases 
monotonically with increasing velocity. Solutions with A ,  += 0 exist within the region 
outlined by the oblique curves ; therefore, the bifurcation for K > i( 1 - r )  will now be 
associated with A ,  < 0. 

There is a range of air velocities for which the bifurcation loci are very close to the 
horizontal. This implies that, unless K has a value very near to the critical, the 2 --f 1 
bifurcation will not happen. An inspection of (4.1) indicates that this phenomenon 
is associated with the denominator of the first term on the right-hand side becoming 
very small. Indeed, by using the linear dispersion relation and considering the 
physically important case of waves moving in the same direction as the wind, one can 
compute the singular air velocity to be 
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FIGURE 5.  Coefficient of the order O(A, )  term in (4.1) vs. K ,  for different current velocities C. 
1 : U = 0 ;  2 : C = 400 cm/s; 3 :  U = 480 cm/s;  4: Ti = 500 cm/s. 

For this air velocity the denominator in (4.1) is, to first order, equal to zero. It is 
interesting to compare Us with the critical K-H current velocity beyond which linear 
steady waves cease to exist. This is found from the linearized form of (3.9) to be 

l + r  
r 

ql = - [( 1 - T )  f K]. (4.3) 

It is observed that the singular current velocity Us is always smaller than UC1, and 
approaches U,, as r --f 1. 

For current velocities close to Us, there is a profound change in the importance of 
the resonance interaction. Note from (4.1) that the amplitudes of the sccond and first 
harmonics are comparable when the coefficient of the A,-term becomes very small (of 
order O(A,)). This coefficient is plotted versus (1 - Y) - 2~ in figure 5 at  different air 
velocities for waves a t  the interface between air and water. The important conclusion 
is that, for air velocities close to  Us the magnitude of this coefficient is large 
everywhere except in a very narrow band around the resonant wavelength. 
Therefore, the resonant interaction is significant only extremely close to K = ;( 1 - T )  

and the Stokes-type expansion with A ,  = O(A:) is valid everywhere else. 

5. Numerical method 
Velocity potentials #1, $ z  and stream functions @l,  kZ independent of time are 

defined for the two fluids. The physical coordinates are expressed as Fourier series of 
$1, below the interface and of q5z, $B above the interface in the following way: 
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On the interface, which is chosen to be $l = ~2 = 0, the tangential velocities below 
and above are given by 

(5.3) 
N 

The inequality of the velocity potentials of the two fluids a t  the interface is reconciled 
by defining the variables 

s = 0.5[(A/c) - ($1/c)13 (5 .5)  

and 5 = ($2/c)-s = ( $ l / C )  +a, (5 .6)  

where q51, $2 are the values of the velocity potentials on the interface. The equations 
are discretized by N +  1 points from the crest to the trough as follows: 

t( = (i- l)n/N (i = 1,2 ,  ..., N+1). (5.7) 

(5.8) 

The Bernoulli equation 

&: -+t$ + (1 - T )  7 - K R - ~  = b, 

provides one set of N +  1 equations, to be satisfied a t  each ti ,  In (5 .8)  lengths are 
normalized with the inverse wavenumber k-l = L/2n and velocities, with (glk);, 
Term r is the ratio of densities and K is a dimensionless surface tension defined by 
(2.2). Term R is the radius of curvature and its inverse equals 

where x’, y’ ,  etc. are derivatives with respect to 5 of the interface coordinates x, y .  
The requirement that  x1 = x2 and y1 = y2 at each one of the N +  1 points along the 

interface produces the following equations : 
N N 

5- s + C ul, sin [n(t -  s)] = 5 + s + 2 a2, sin [n(5 + s)], (5.10) 
1 1 

N N 

a1.0 + Ca1,a cos [n(t-s)I = ~ 2 , 0 - C a 2 , n  cos [n ( t+~)]*  (5.1 1)  
1 1 

The auxiliary equations for the crest and trough 

s(0) = s(n) = 0, (5.12) 

satisfy (5.10) identically at the end points and leave the values of s at the other N -  1 
points as unknowns. The value of al,o affects only the mean interfacial elevation, I t  
is taken as al,o = 0. The mean elevation y is calculated and then al,o = -y, u2,0 = 
u2,,-~,b=b+(1-r)g.This1eavesthe3N+2unknowns,a1,, , . . . ,  ul ,N,u2,1  ,..., 
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s2, ..., sN,  a2,0, c, b to  be defined by the 3Nfl  equations (5.8), (5.10) and (5.11). A 
definition of the wave magnitude (either the wave height or the amplitude of the 
main harmonic) provides the last equation. 

The system is solved by Newton’s method. Accuracy is tested by the independence 
of the results on the value of N. The magnitude of error is monitored by the ratio of 
the last to the first Fourier coefficient. (For more details, see Saffman & Yuen 1982). 
The method works extremely well for waves of small to moderate amplitude. 
However, beyond some steepness the accuracy decreases rapidly and cannot be 
recovered by reasonable increases in N (values up to  N = 100 were used). Chen & 
Saffman (1980) used a hodograph-plane Fourier method for free-surface waves and 
had no difficulty reaching waves of maximum height. Such waves were always 
limited by the profile enclosing one or more bubbles, so that a further increase in 
height would result in the surface crossing itself. It is evident that such a 
configuration leads to profile singularities for only the upper fluid (a cusp a t  the 
contact point). Therefore, the failure of the present work to obtain the highest waves 
is not surprising. It should be noted that an integro-differential analysis of interfacial 
waves (Vanden-Broeck 1980) also failed to reach the limiting profile but there was 
evidence that the limit wave would exhibit trapped bubbles. 

6. The finite-amplitude 2 + 1 bifurcation 
The numerical method described in $5 was used to  calculate the bifurcation curve 

discussed in $4 for waves of finite amplitude. A range of dimensionless surface 
tensions of $ > K 2; was examined. For air-water waves this corresponds to 
wavelengths (before the 2-t 1 bifurcation) of 1.22 cm < L < 2.11 cm. Since the 
ripples first observed in gas-liquid flows are 1.5-2.0 cm in length, the above range 
was adequate for the purposes of this paper. Starting with K = for a small amplitude 
wave of class 2, the amplitude was increased until a change of sign of the determinant 
of the Jacobian matrix occurred. This indicated that the solution branch went 
through a critical point. Since all variables were changing monotonically, a crossing 
of the bifurcation curve had taken place. The calculation was repeated for a number 
of values of K < $ and for different current velocities U to investigate the effect of 
wind speed on the bifurcation of finite-amplitude waves. Since the wavelength is 
changing with changing K ,  the dimensionless current velocity U/(g /k ) f  varies as well. 
It was, therefore, decided i t  would be more useful to  find the bifurcation locus for a 
constant dimensional velocity. The sign-change method for determining the 
bifurcation locus worked extremely well for small-to-moderate current velocities, 
and the accuracy was again tested by the independence of the results on the value 
of N (N = 20, 40, 60 were used). However, for high current velocities, the Jacobian 
started changing sign irregularly beyond some wave height, and the results were 
dependent on the value of N. Increasing N produced more irregular results, even 
though the wave properties, calculated for all values of N ,  were exactly the same. The 
reason for this irregular behaviour is not known. 

Figure 6 shows the amplitude of a class 2 air-water wave a t  which bifurcation 
occurs, for current velocities 0, 2.0, 2.5, 3.5, 4.0 and 6.0 m/s. The uncertainties in the 
values of K and ul, are 0.002 and 0.001 respectively. (The term al, is the steepness 
normalized with the wavelength after bifurcation and, therefore, is related to the 
steepness of the small ripples by ICA = 2a,,,.) As noted by Chen & Saffman (1980), 
many Fourier components are introduced when bifurcation occurs a t  finite 
amplitude. Thus, the return of the bifurcation locus to the K-axis is the result of the 
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FIGURE 6. The amplitude of a class 2 air-water wave at which bifurcation occurs, for current 
velocities 0, 2.0, 2.5, 3.5, 4.0 and 6.0 m/s. 

a1,3 harmonic becoming increasingly more important with decreasing K .  For K x t the 
locus actually represents a 2 -f 3 bifurcation. 

For zero current velocity the bifurcation curve agrees with the one calculated by 
Chen & Saffman (1980) for free-surface waves. Increasing the current velocity 
postpones the bifurcation to higher waves for all wavelengths considered. However, 
as current velocity approaches the critical condition for a K-H instability the wave 
height at  which bifurcation occurs decreases again, as shown by the locus for 
U = 6 m/s in figure 6. For K % 4 the numerical results agree with the prediction 
of the weakly nonlinear theory of $4. 

Choi (1977) observed experimentally a doubling of wavelength for capillary- 
gravity waves produced by wind blowing at 5 m/s over water. The waves that 
were generated first had a wavelength of 1.8 cm. As they propagated downstream 
they grew in amplitude and, eventually, doubled in wavelength a t  a certain fetch. 
The wave height at which the dominant frequency changed was roughly estimated 
by Chen & Saffman (1980) to be 1.7 mm. (In the present notation this is equivalent 
to a1,2 = 0.15.) (Note that A ,  in Chen & Saffman’s definition of the Fourier series is 
twice as large as ul, in the present work.) The value of K corresponding to the above 
experiment was 0.23 (cr = 74 dynes/cm) and figure 6 indicates that bifurcation for 
K = 0.23 and u1,2 = 0.15 roughly occurs for a wind velocity of 4.M.5  m/s. Although 
the agreement is not exact it indicates that the effect of wind is probably correctly 
taken into account. 

7. Kelvin-Helmholtz instability 
It can be seen from the dispersion relation (equation (3.9)) that for linear waves, 

and given values of density ratio r and current velocity U,  there are two solutions 
corresponding to the two roots of the quadratic equation for c.  Such steady solutions 
cease to exist when U exceeds a critical value U,, given by 

l + r  
r 

Vz,, = - [ ( I - ~ ) + K ] ,  
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with 
r [ (  1 - r )  + K] 

1 S r  
CEl = 

For finite amplitude waves, (3.9) gives the dispersion relation valid to order A;. Its 
form indicates that the critical current, U,, beyond which steady solutions no longer 
exist is a function of the wave magnitude. To derive an equation valid in the 
neighbourhood of the K-H instability the expression for A ,  (equation (3.7)) is 
substituted into (3.9) and the phase speed at  the critical point, calculated from the 
lower-order dispersion relation, is backsubstituted in (3.9). It should be noted that 
the dispersion relation is used up to order 0(1) in some terms of (3.9) and up to order 
O(A,) in others to keep the entire expression valid to O(Ai) .  The end result i s  the 
following equation : 

+.ca:(-) l - r  ' 3 ( l - - r ) - ~  
l + r  ( l - r ) - 3 ~  

Equation (7.3) is uniformly valid for wavelengths close to the resonance condition. 
It will be used in combination with (4.1), which supplies the relation between the 
amplitudes of the first two harmonics. For wavelengths such that K is not close to 
i(1 - r ) ,  equation (4.1) gives A, of order O(Aq); and substitution into (7.3) recovers the 
results of Miles (1986) and Nayfeh & Saric (1972). 

To describe the results for wavelengths close to the resonance, a measure of the 
wave magnitude needs to be defined. When A ,  A ,  the crest-to-trough distance is 
used to characterize the wave since it is a monotonic function of the wave size. When 
both harmonics are significant such a measure could be misleading. Instead it is 
proposed to use the ' combined ' wave steepness given by 

e = 2(Ai + 4A$. (7.4) 

For A,  9 A,, E = 2A, = ICA in agreement with the conventional definition of wave 
steepness. For A ,  -4 A,, E = 2(2A,) and, since the physically significant wavelength 
(associated with A,) is half of the nominal, E equals the actual wave steepness. This 
expression can be generalized and used to  describe higher-order resonances as well as 
the highly nonlinear resonant waves that are generated numerically. 

Air-water waves are considered first, by choosing a density ratio r = 0.0013. The 
relative magnitude of the amplitudes A , ,  A,  a t  the K-H instability is derived from 
(4.1) by substituting the critical linear phase speed from (7.2). The results for a wave 
with steepness E = 0.01 are shown in figure 7. It is evident that  close to K = 0.49935 
there are two wave families, each of which eventually degenerates to a pure wave 
with half the original wavelength (A,  = 0). The critical current velocity beyond 
which steady solutions cease to exist is shown as a function of K in figure 8 for 
E = 0.01. A comparison with figure 2 indicates that the singularity has been 
removed. The dashed curve represents the critical current, U,, for a pure class 2 
wave (A ,  = O,A, + 0) with E = 0.01. The two solution families meet this curve 
when A ,  = 0, as expected from the above observations. 

A steady wavetrain under the action of wind is more conveniently viewed as 
having a constant wavelength (at least for a short time) and as growing in amplitude. 
Therefore, it is of interest to investigate the dependence of the critical current speed 
U, on the wave steepness E .  Equations (7.3) and (4.1), together with the definition of 
the wave steepness, are used and the results for selected values of K are shown in 
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FIGURE 7. Relative magnitude of the first two harmonics for an air-water wave with steepness 
e = 0.01. 
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FIGURE 8. Critical current velocity C', for an air-water wave with steepness e = 0.01. ---, 
uniformly valid expansion ; ---, U, for pure class 2 wave. 

figure 9. For K = 1.0, (u",/c",,)- 1 is proportional to e2 in agreement with (2.3) and 
the K-H instability is subcritical for finite amplitude waves. The same functionality 
holds for K = 0.1, only now with a positive slope. For K larger than 0.49935 and 
approaching it, the K-H instability becomes increasingly subcritical up to K = 

0.49935. Very close to the resonance there also exists a second solution which shows 
a more complicated behaviour : The critical current initially increases with steepness, 
reaches a maximum and decreases again. As a result, progressive waves of permanent 
form exist only up to current velocities a little higher than the critical linear 
Ucl. For a supercritical current velocity in this range the steepness of steady waves 
has both a maximum and a minimum allowable value. A similar behaviour is 
depicted for K = 0.45. For longer waves, resonances of higher order are expected to  
become important (Chen & Saffman 1979). However, this was not pursued in the 
present work. 
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FIGURE 9. The critical current velocity U, as a function of the wave steepness 6 to second 
order, for various wavelengths. 

The present results indicate that, for wavelengths smaller than the resonant and 
approaching it, the K-H instability becomes increasingly subcritical. Therefore, for 
a given current velocity, smaller than Uc,, steady progressive waves can only grow 
up to a maximum steepness. However, they can further evolve by a 2 --f 1 bifurcation, 
if they have reached the height that allows the bifurcation to take place. It is, 
therefore, possible that the two phenomena studied in the present work are related 
in that the K-H instability could be triggering the occurrence of the 2 + 1  
bifurcation. 

The ripples that are first observed in gas-liquid flows have wavelengths of 1.5 to 
2.0 cm, so the 2 + 1 bifurcation takes place a t  finite amplitude. Such wavelengths are 
far enough from the resonant wavelength of 2.44cm that the weakly nonlinear 
results for a K-H instability, based on the ordering a1,2 = O(a;,,) (Miles 1986), are 
valid. Xumerical calculations for waves with lengths 1.5-2.0 cm indicate that there 
are only small deviations from the weakly nonlinear results for steepness kA up to 
0.35 (al,6,,/al, M for N = 60). 

The main conclusion from the weakly nonlinear analysis (Weissman 1979 ; Miles 
1986) is that, for the wavelengths presently considered, the K-H instability is 
subcritical and described by the equation 

q = q i ( l  +CkZA2), (7.5) 

where C is a parameter, depending on the wavelength and density ratio, which is 
negative for air-water waves with wavelengths less than 2.44 cm. Furthermore, 
Miles (1986, his equation (4.12)) showed that such waves become unstable for 

k2A2 > $(k2A2),,,. (7.6) 

The above results are depicted in figure 10(a, b)  for ripples with wavelengths 
(before bifurcation) of 1, = 1.6 em (a) and L = 1.93 om ( 6 ) .  Curve (1) is the K-H limit 
to the existence of progressive waves of permanent form and curve (2) is the 
steepness a t  which such waves become unstable, as given by (7.6). It is noted that 
both of these curves give the linear critical current velocity, Ucl,  for a wave of zero 
height and a decreasing critical current velocity with increasing wave steepness. The 
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FIGURE 10. Dependence of the wave steepness on the current velocity U for: -( l ) ,  the K-H limit 
to  the existence of steady waves; -(2), the  stability limit of steady waves; 0, the finite- 
amplitude bifurcation ; . . . , the weakly nonlinear bifurcation. (a )  Ripples with L (before bifurcation) 
1.6 em. (b )  L = 1.93 cm. 

dotted curve is the height a t  which the 2 --f 1 bifurcation can take place according to 
the weakly nonlinear theory ; the circles are the heights calculated by the numerical 
method described in $5 .  As expected, the weakly nonlinear results become 
increasingly inaccurate away from L = 1.22 em. (Note that a1,2 of figure 6 is 
normalized with the wavelength after bifurcation and, therefore, is related to the 
steepness of the wave kA by kA = 2a,,,.) These dotted curves approach asymp- 
totically the singular current velocity (equation (4 .2)) ,  so that an arbitrarily large 
wave steepness is required close to Us. A rough extrapolation of the bifurcation 
curve, based on a knowledge of the behaviour close to Us obtained from the weakly 
nonlinear results (see $4), indicates that it meets the instability curve ( 2 )  a t  a current 
velocity U, x 4.5 m/s. For U < U, the bifurcation loci are below curve ( 2 ) ,  so a 
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steady wave can grow in height without changing wavelength. It can. therefore. be 
speculated that the bifurcation is taking place for U b',,. 

The value of the critical current velocity (being close to Us) is not very sensitive 
to the initial wavelength in the range 1.5-2.0 em. What mainly varies is the wave 
steepness a t  which the bifurcation occurs. For example, calculations for the length 
I, = 1.93 cm, presented in figure l O ( b ) ,  suggest that bifurcation occurs a t  smaller 
steepness than for L = 1.6 em. 

The above results are strictly valid for deep fluids. For the range of wavelengths 
considered, they are applicable to gas and liquid streams with thickness hG, 2 1 em. 
The main conclusion from the analysis is that, if small ripples exist a t  the gas-liquid 
interface, they can bifurcate a t  current velocities above a limiting value. This 
transition velocity. which is smaller than Ucl,  should bc insensitive to changes in the 
gas and liquid thicknesses hG, L, as long as hG, 2 1 em. This last condition, that the 
actual current velocity is independent of the gas space thickness, is crucial for the 
discussions presented in the next section. 

8. Transition to slug flow 
The transition from a stratified pattern to  a slug pattern for horizontal gas-liquid 

flow has been the subject of a number of theoretical studies. Kordyban & Ranov 
(1970), Wallis & Dobson (1973) and Taitel & Dukler (1976), among others, considered 
a K-H instability mechanism for long wavelength disturbances and incorporated 
semi-empirical corrections for nonlinear effects. Lin & Hanratty (1986) included 
viscous effects in a linear analysis of long wavelength disturbances. They were able 
to show that viscosity is destabilizing for long wavelength disturbances on low- 
viscosity liquids ; this provided an explanation for the occurrence of the transition a t  
current velocities below the inviscid K-H prediction. However, Andritsos et al. 
(1989), working in a 4-inch pipeline with air and watcr-glycerine solutions with 
viscosities 1,  20 arid 100 cY, showed that the analysis of Lin & Hanratty does not 
correctly predict the onset of slug flow for very viscous liquids. Furthermore, they 
observed tthat the precursor to the creation of a slug is the formation of small ripples 
which suddenly evolve into a long wave. If the gas space is small enough, such a wave 
grows to cover the entire cross-section and, therefore, creates a slug. This observation 
was facilitated because the interface is smooth up to the transition point for very 
viscous liquids (p 2 20 cP). This is not the case for the air-water interface, which is 
covered by ripples generated a t  much lower gas velocities by a mechanism that 
considers energy supplied to the waves by pressure variations in phase with the wave 
slope (Miles 1957 ; Hanratty 1983). 

The observations of Andritsos et al. (1989) and their data are used in the present 
work in conjunction with the theory developed in §$6 and 7 .  The 2 +  1 bifurcation, 
discussed earlier, is postulated to be the first step in the process leading from ripples 
to large disturbances, and eventually to slugs. A crucial test is to  demonstrate that 
the transition velocity is independent of the fluid depth, since the current velocity 
should be proportional to the square root of the gas space thickness (Wallis & Dobson 
1973) if the slugs originate from infinitcsimal long waves. 

Two cases are distinguished : for very viscous liquids (p = 20-100 cP) there are no 
ripples on the interfacc a t  small current velocities, since such ripples are created on 
viscous liquids by a K-H mechanism (Miles 1959). Therefore, the transition to slugs 
is expected to occur as soon as the ripples appear, a t  the critical K - H  current 
velocity. For water (and other low-viscosity fluids) such ripples are created a t  gas 
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FICT-RE 11. The current velocity U at transition t o  slugs as a function of the liquid film thickness, 
for viecous liquids (Data from Andritsos et al. 1989). Viscosity = 20-100 cP; 0 ,  D = 9.53 cm;  
0, 1) = 2.52 cm. 

velocities below that needed for a K-H instability (z 1 m/s. Miles 1957). Therefore, 
the arguments of $7 are applicable and slugs are expected to form at  a constant 
velocity, if they originate from these small ripples. 

The data taken by Andritsos et al. are used in figures 11 and 12. The gas and liquid 
volumetric flow rates are converted to  actual velocities by using the measured liquid 
thickness and a plug flow assumption. Figure 11 shows the results for the viscous 
liquids. The transition to slugs occurs a t  a relative current velocity of 6.5-7.0 m/s, 
in agreement with the linear K-H instability prediction, for both l-inch and 4-inch 
pipes. Furthermore, changing the viscosity from 20 to 100 CP has no effect on the 
transition, which supports the inviscid theory explored in this paper. 

The theory developed in $ 7  indicates that the bifurcation height decreases as the 
current velocity approaches the critical for a linear K-H instability. For higher 
current velocities steady wave solutions do not exist because the K-H instability is 
subcritical for wavelengths L < 2.44 cm. More information can, however, be 
extracted from the theory if the critical phase speed cC1 at the K-H instability 

rU 
ccl = - 

l f r  

is used in (4.1) t.0 calculate the bifurcation steepness, 

Equation (8.2) shows that the height for the 2 + 1 bifurcation to take place varies as 
CP2 in the neighbourhood of the K-H instability. Therefore, it becomes very small 
for high current velocities. This is in agreement with the observations on viscous 
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FIGIJRE 12. The current velocity U at transition to slugs as a function of the liquid film 
thickness for water (Data from Andritsos et al. 1989). Viscosity = 1 cP;  D = 9.53 cm. 

fluids that the ripples evolve to long waves very fast and that slugs form close to the 
entrance. 

The results for air-water are shown in figure 12. When there is a hydraulic gradient 
along the pipe (small gas velocities) the value of the liquid thickness used is the one 
close to the inlet. This can be justified by arguing that the highest liquid thickness 
corresponds to the most unstable condition. However, i t  is contradictory to the 
theoretical prediction and laboratory observations that the ripples need to reach a 
finite amplitude to bifurcate and, therefore, that the slugs should form downstream. 
Figure 12 shows that, with the use of the inlet liquid thickness, the transition current 
velocity remains constant a t  around 3.0-3.5 m/s. This, however, is much lower than 
the 4.5 m/s that was theoretically estimated in $7. If the average liquid thickness is 
used instead of the inlet value, the transition current velocity does not even remain 
constant. 

Experiments with smaller pipe diameters have shown that in a range of diameters 
of 2.52-9.53 cm there is a definite effect of pipe diameter on the initiation of slugs in 
air-water flows. This is not predicted by the present theory but is successfully 
modelled by assuming that the slugs originate from the growth of small-amplitude 
long waves (Lin & Hanratty 1986). The long wavelength theory provides an 
instability mechanism at lower current velocities than the present theory and, as a 
result, is the important one for air-water in small pipes. For large diameter pipes, the 
long wavelength theory predicts unrealistically high current velocities, so i t  is 
plausible to assume slugs appear as a result of nonlinear growth of small ripples. This, 
however, needs to be investigated. 
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9. Concluding remarks 
This paper examines the effect of current velocity on capillary-gravity waves a t  

wavelengths close to where resonance has been observed for free waves. 
The wavelengths over which resonant (or near-resonant) interactions occur is 

found to be affected strongly by current velocity. This range decreases with 
increasing gas velocity until a t  a singular gas velocity, Us, defined by (4.2), it occurs 
in an arbitrarily small range of wavelengths. For still higher gas velocities the range 
increases. This singular velocity is always smaller than the critical current velocity, 
Uc,, beyond which linear steady waves cease to exist. 

Chen & Saffman have shown that when free surface waves in the capillary-gravity 
range reach a certain height a bifurcation is possible whereby a doubling of the 
wavelength occurs. It is shown that the presence of a current velocity increases the 
height required for this bifurcation. This effect of current velocity is particularly 
strong in the neighbourhood of Us. However, as the current velocity approaches U,, 
the height required for bifurcation decreases again. 

Previous studies have shown that the nonlinear Kelvin-Helmholtz instability is 
subcritical at  wavelengths smaller than the resonant wavelength. That is, the critical 
current velocity a t  which finite amplitude waves cease to exist decreases with 
increasing amplitude. However, these analyses are not valid in the neighbourhood of 
the resonant wavelength. The present analysis extends this previous work by 
resolving the characteristics of the K-H instability of finite amplitude waves close to 
resonance. An interesting new result that evolves is that for waves with wavelengths 
shorter than the resonant wavelength and approaching it (capillary-side waves) the 
K-H instability becomes increasing subcritical. 

The prediction of the possibility of a bifurcation does not mean that one will occur. 
A consideration of the few experimental results which seem to be manifesting this 
phenomenon has led us to postulate that a K-H instability can trigger a bifurcation. 

A number of studies have been carried out in which wave development with 
increasing fetch has been examined for air-water flow. The first ripples are regular 
and have a wavelength of 1.5-2.0 cm. They appear to be generated by a sheltering 
mechanism whereby energy is fed to the waves by wave-induced pressure variations 
in the gas flow that are in phase with the wave slope (Cohen & Hanratty 1965). With 
increasing fetch the complexity of the waves and the dominant wavelength increases. 
A number of investigators have obtained results that suggest that the first step in 
this process of wave development is a bifurcation. The argument that this bifurcation 
is triggered by a subcritical K-H instability gives the result that the bifurcation will 
occur for the air-water system at current velocities greater than 4.04.5 m/s for 
wavelengths in the range 1.5-2.0 cm. This prediction, as well as the prediction of the 
height a t  which bifurcation will occur, are consistent with experimental observations. 

Furthermore, the postulate that a K-H instability can trigger a bifurcation 
provides an interpretation of recent studies of the initiation of slugs for gas-liquid 
flow in a pipeline by Andritsos et al. (1989). They found for viscous liquids (greater 
than 20 cP) that slugs evolve from short capillary-gravity waves generated by a 
K-H instability. The present analysis shows that a bifurcation is possible when these 
waves grow just slightly in height. It is, therefore, proposed that this bifurcation is 
the first step in the evolution of these ripples to a slug. 

Bifurcation is not possible on these viscous liquids at lower gas velocities than U,,, 
since no waves exist. However, for air-water flows capillary-gravity waves generated 
by a sheltering mechanism exist a t  current velocities less than Uc,. It is possible for 
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these to grow to a height where a bifurcation is triggered by a subcritical K-H 
instability. On the basis of these observations i t  is predicted that slugs can be 
generated at a gas velocity of 4.5 m/s for air-water flows. 

Obwrvations in pipelines with diameters of 9.53 cm and less arc vontrary to  this 
result in that slugs are generated at  lower gas velocities and in that there is an effect 
of the height of the gas space. It appears that the direct growth from a long 
wavelength disturbance (Lin & Hanratty 1986) is the correct explanation of these 
results. However, it is possible that an evolution from small wavelength waves causes 
slugging for air-water flow in large diameter pipes and that the estimated critical 
velocity of 4.5 m/s is applicable. 

This work is supported by the National Science Foundation under Grant 88-00980 
and by the Department of Energy under Grant DEF (202-86ER13556. 
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